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ABSTRACT

Self-localization in large environments is a vital task for accurately
registered information visualization in outdoor Augmented Real-
ity (AR) applications. In this work, we present a system for self-
localization on mobile phones using a GPS prior and an online-
generated panoramic view of the user’s environment. The approach
is suitable for executing entirely on current generation mobile de-
vices, such as smartphones. Parallel execution of online incremen-
tal panorama generation and accurate 6DOF pose estimation using
3D point reconstructions allows for real-time self-localization and
registration in large-scale environments. The power of our approach
is demonstrated in several experimental evaluations.

Index Terms: I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis I.4.8 [Image Processing
And Computer Vision]: Scene Analysis—Tracking; I.5.4 [Pattern
Recognition]: Applications—Computer Vision C.5.3 [Computer
System Implementation]: Microcomputers—Portable devices (e.g.,
laptops, personal digital assistants)

1 INTRODUCTION

For visually pleasing results in Augmented Reality (AR) applica-
tions, highly accurate registration of the camera with respect to the
augmented environment is necessary. Current “AR browsers” on
mobile phones rely on the built-in sensors to provide localization.
Depending on the type and scale of the scenario, the availability of
sensory information can vary significantly. For example, GPS data
is only accessible in outdoor scenarios, while Bluetooth or WiFi
triangulation is only a reasonable choice for indoor environments.
Besides the lack of availability, a major problem is also the lack of
accuracy, which is insufficient for high quality AR applications. In
outdoor scenarios the GPS positioning error might be in the range
of 10 to 20 meters: consumer-grade GPS only allows coarse posi-
tion estimation in 3D plus bearing if a compass is available.

For a high-quality AR the current camera pose with respect
to the environment must be estimated with full 6 degrees-of-
freedom (6DOF) at real-time update rates. Previous research pri-
marily uses computer vision techniques to compute the localiza-
tion. Such 6DOF localization works on mobile devices for small
workspaces [23, 12], but scaling such techniques to larger environ-
ments, such as an entire city, is challenging.

1.1 Related Work
Some recent work formulates the city-scale localization as an image
retrieval problem: assuming a database created from GPS-tagged
images, find the closest matching images to the current view and
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Figure 1: Localization result given the panoramic image shown at the
bottom.

return the GPS information or a quantity derived from it; for ex-
ample, consider the work by Zhang and Kosecka [24]. A similar
approach operating in near-real time is described by Schindler et
al. [18]. The paper by Zhu et al. [25] computes more accurate 2D
coordinates in real time, but relies on a dual stereo camera setup,
while the other systems use a conventional single camera.

In contrast to these approaches, which perform essentially 2D
localization, AR requires full 6DOF. Outdoor self-localization with
6DOF was shown by Reitmayr and Drummond [16], but this work
relies on a textured polygonal model of the environment and does
not necessarily scale to large environments. Likewise, the seminal
mapping and tracking work by Klein and Murray [11] is intended
for small workspaces. In contrast, Irschara et al. presented a 6DOF
localization method for large environments using vocabulary trees
and a sparse point-cloud reconstruction [9]. By inserting synthetic
views during database creation, visibility of features from given
viewpoints is inferred, which is later used to compress the database
size and to improve the localization results. Real-time performance
is achieved through the use of a GPU in order to deal with the high
computational cost of the method. Li et al. [14] improved accuracy
over this work, but they do not report real-time frame rates.

Existing 6DOF localization systems have in common that they
are computationally intensive and not directly suitable for mobile
devices. Recent work has therefore examined how localization
can be enabled using limited computational and storage resources.
Takacs et al. [21] perform keypoint detection and matching directly
on the mobile phone. Features are clustered in a regular 2D grid and
pre-fetched by proximity. Each grid element contains a set of clus-
tered meta-features that represent the most repeatable and stable
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features of the scene. While this technique operates in real time,
it does not provide full 6DOF. Klein’s and Murray’s [12] study
showed how parallel mapping and tracking with 6DOF can be com-
puted on a mobile device, they accepted a limitation to rather small
workspaces as a trade-off, however.

This work builds on the system by Arth et al. [2], which uses
an approach based on geo-registered 3D sparse point-cloud recon-
structions of urban environments. The large amounts of sparse
points are partitioned into smaller sets using the idea of Potentially
Visible Sets [1], while feature matching is performed using vocabu-
lary trees. An evaluation of this approach was conducted in a small-
area office environment only, leaving an outdoor application of the
system an open issue, which will be addressed in this paper. How-
ever, a major outcome of their evaluation was that the success rate
and the accuracy of self-localization significantly grows with the
widening of the cameras field of view (FOV). Dealing with this is-
sue is one of the main goals of this paper.

1.2 Contribution
In this paper we are presenting a system that solves the self-
localization task in large-scale outdoor urban scenarios giving ro-
bust and accurate results (see Figure 1). Our method computes lo-
cation using a 3D point cloud reconstruction generated offline, as
originally proposed by Arth et al. [2].

A novel technique for capturing images of the environment is
used, which overcomes the problem of the narrow FOV of mo-
bile device cameras. A high-quality and visually pleasing looking
panorama of the environment is generated in an online and real-
time manner. Combining the calculation of natural features with
a robust pose estimation algorithm, the user’s position can be esti-
mated almost instantly.

The high degree of accuracy and robustness of our method allows
for a level of augmentation quality that is considerably higher than
possible with previous approaches.

Moreover, placing new augmentations online into a live view
can now be combined with highly exact geo-referenced position-
ing, which facilitates accurate content creation and contextual as-
signment.

2 SYSTEM OVERVIEW

In our approach we describe a system that delivers high quality self-
tracking across a wide area (such as a whole city) with six degrees
of freedom (6DOF) for an outdoor user operating a current gen-
eration smartphone or a similar mobile device. The system was
designed for the characteristics – both advantageous and disadvan-
tageous – of mobile devices. In particular, we were assuming the
following design constraints:

• The algorithms must run directly on the mobile device, since
continuous communication with a server incurs high latency
for smooth operation. This implies that only moderate com-
putational and storage resources can be used.

• Mobile device cameras typically have a rather limited FOV of
40 degrees or less. This fact makes it problematic to compute
accurate localization, since often too few high-quality interest
points are contained in a single image. A major goal of this
work is to overcome this restriction.

• In addition to the camera, mobile devices provide additional
sensors, such as GPS, compass or linear accelerometer. The
quality of these sensors is only mediocre. Nonetheless, they
provide additional input that we were using to solve the track-
ing problem.

• We assume that a 3D reconstruction of the environment is
ready to be used for model-based tracking. With the rapid pro-
liferation of 3D maps services on the Internet, availability of

Figure 2: Overview of the localization system – three activities
are performed simultaneously: orientation tracking, mapping of a
panoramic image, and localization of the panoramic image relative
to a large-scale 3D reconstruction. The results are combined into a
6DOF absolute pose measurement.

3D reconstruction data is a reasonable assumption. However,
it must be noted that street-side image data from map services
does not cover all locations equally well. Consequently, ex-
isting solutions for wide-area localization suffer in less well
covered areas, in particular, if repetitive structures are visible.
As a remedy, we reduce the search space with a location prior.

• Given a location prior and a pedestrian moving at rather lim-
ited speed, current wireless wide area networks allow incre-
mental pre-fetching of a reasonable amount of data for model-
based tracking (e.g., a few tens of megabytes per hour). The
resulting bandwidth requirement is equivalent to online map
services on a mobile device. Our system uses this approach
to download relevant portions of a pre-partitioned database on
demand.

• Users typically consult a navigation service on a mobile de-
vice at decision points [6]. It is therefore realistic to expect
that the user is standing still for a moment while orienting the
device. We require this behavior for initializing the tracking,
and assume the user’s cooperation.

In the following, we describe a system that fits the above con-
straints (cf. Figure 2). Overall, the system is composed of an in-
cremental orientation tracking part operating with 3DOF [22], and
a model-based localization part operating with absolute 6DOF, but
at a slower pace. All parts of the system execute on a mobile device
simultaneously, but at different update rates, in the spirit of [11].

At startup the user is required to explore the environment through
the camera’s viewfinder. The video stream from the camera is
fed to a feature-based orientation tracking thread, which runs at
video frame rate. At the same time, the mapping thread builds a
panoramic image whenever it receives previously unmapped pixels
from the tracking thread.

The panoramic image is subdivided into tiles. Whenever a tile
is completely covered by the mapping thread, it is forwarded to
the localization thread, which compares the features found in the
new tile to its database of sparse features from the 3D reconstructed
model. If the localization thread successfully recovers an absolute
pose, it forwards this information to the fusion step.

The fusion step combines the device’s current incremental ori-
entation with the absolute pose recovered from the panoramic map.
Therefore, the fusion yields dynamic pose updates with 6DOF, al-
beit from a semi-static position.
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Computing the localization from the partial panoramic image
decouples tracking from localization effectively. This allows sus-
taining real-time update rates for the tracking and a smooth AR
experience. At the same time the use of the partial panoramic im-
age overcomes the disadvantages of the narrow field of view of the
mobile device’s camera – a user can improve the panorama until a
successful localization can be performed, without having to restart
the tracking.

In the following sections, we provide more details on the in-
dividual system components. Section 3 gives background on the
online panorama generation. Section 4 discusses the offline recon-
struction, which provides the necessary model data for the global
localization. Section 5 describes the core of the new system, the
localization process itself. Section 6 presents experimental results
that support our claim concerning improved localization accuracy
and Section 7 finally draws some conclusions.

3 PANORAMA GENERATION

High quality panorama generation is a well-known image stitch-
ing task. For a detailed overview of image stitching, the inter-
ested reader is referred to a comprehensive tutorial on this topic
by Szeliski [20]. In most cases, the task of finding the geometrical
relationship between individual images can be solved sufficiently
well by determining image point correspondences, e.g., by using
the well-known SIFT algorithm, as also used in the popular Autos-
titch software [4, 5, 15]. The majority of panorama creation meth-
ods are working on high-resolution still images and rely on signif-
icant amounts of computational and memory resources. Since the
actual process of framing individual images is still prone to cam-
era artifact errors, these methods incorporate complex algorithms
to remove seams and other visual artifacts.

Our panorama creation method works on the continuous image
feed from a mobile phone camera and has to cope with the resources
available on the device. Since our approach relies on an online map-
ping approach, only incremental techniques can be used. Many ex-
isting panorama stitching techniques, which rely on a complete set
of source images for the creation of the panorama, are not applica-
ble.

The panorama generator tracks relative orientation with 3DOF
and simultaneously builds a cylindrical environment map. We are
assuming that the user does not change position during panorama
creation, i.e., only a rotational movement is considered, while the
camera stays in the center of the cylinder during the entire process
of panoramic mapping (c.f . Figure 3). The first frame is mapped
onto the cylinder surface to build the initial portion of the emerging
panorama.

While the user is rotating the device, consecutive frames from
the camera are processed. The algorithm computes the rotation be-
tween the current camera image and the already mapped panorama
by extracting FAST corners in the live image. These features
are matched with normalized cross-correlation against the tracking
dataset taken from the partial panorama.

For each new frame the area in the panoramic view, which has
not yet been mapped, is determined automatically. If this area is
not empty, the panorama is extended with the new pixels. The map
is subdivided into tiles of 64×64 pixels. Whenever a tile is entirely
filled, the contained features are added to the tracking dataset. A
closer description of the approach can be found in the work of Wag-
ner et al. [22].

4 RECONSTRUCTION AND GLOBAL REGISTRATION

The reconstruction of urban environments is a large field of re-
search. Powerful tools are available for public use that help in ful-
filling this task automatically. For example, the bundler software
by [19] can be used to reconstruct large image collections. The task
of accurately aligning the reconstructions with respect to the real

Figure 3: Panoramic Mapping of the environment onto a cylindrical
surface. We use the term angular aperture to describe the FOV of a
camera.

world can be done semi-automatically using GPS priors from the
reconstruction images.

4.1 Structure from Motion

We are using the triplet based bottom-up reconstruction method de-
scribed in [13], because we want to cover a large area with as little
image data as possible, such that acquiring the source images is eco-
nomical. The challenge of working with such a sparse image cover
is that the incremental insertion of new views tends to be unstable.
To handle this instabilities we transform the initial epipolar graph
into image triplets and build the reconstruction bottom-up from the
most reliable parts of the scene, as detailed in the following.

Our 3D reconstruction pipeline consists of three major steps: (i)
An epipolar graph GE is created with images as nodes and corre-
spondences verified by epipolar geometry as edges. The feature
matching process is accelerated with a bag of words approach. (ii)
This graph is transformed into a graph GT of triplet reconstruc-
tions. The nodes in this graph are all trifocal reconstructions created
from GE and are connected by overlapping views. These connec-
tions, i.e., edges, of GT are created when triplets share at least one
view and pass a test for 3D point compatibility. The feature cor-
respondences of triplets are established by using tracks from the
overlapping views. (iii) These edges of GT are then merged incre-
mentally into reconstructions, while loop closing is handled implic-
itly.

4.2 Global Registration

Rather than assuming that all reconstruction data is fully available
when the reconstruction process starts, our technique supports the
global registration of multiple partial reconstructions that were ob-
tained separately. This enables a more realistic workflow of acquir-
ing a large reconstruction model and maintaining it over time.

When building a global reconstruction from several individual
reconstructions, they must all be aligned in a common global co-
ordinate system. This could be done by using a fully automatic
method as presented by Kaminsky et al. [10], for instance. How-
ever, we chose to provide an initial rough alignment manually, and
then let an algorithm refine it. Providing initial alignment can be
done quickly with a suitable map tool, and prevents pathological
errors resulting from too sparse image coverage and repetitive struc-
tures.
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Figure 4: Sparse reconstruction data set. For better visualization a
quasi-dense point cloud was created using [7].

In order to refine the alignment of two reconstructions, we calcu-
lated matches for each image in the first reconstruction to 3D fea-
tures in the second reconstruction. From these matches, an initial
pose estimate for the image in the first reconstruction with respect
to the second reconstruction is obtained. The manual alignment is
used to verify if the estimated pose is correct.

Using this approach, we can generate verified links between
individual, initially not related reconstructions. We were able
to improve the result of the manual alignment by using bundle-
adjustment to reduce the reprojection error. A result of this ap-
proach is depicted in Figure 4.

4.3 Visibility Partitioning

Since feature database sizes grow with the covered area, it is nec-
essary to partition the data to accommodate the storage limitations
of mobile devices. We created blocks on a heuristically generated
irregular grid to partition the reconstruction into smaller parts. Fea-
ture scale and estimated surface normal vectors could be added eas-
ily as additional visibility cues.

The partitioning of data blocks is on the one hand driven by visi-
bility considerations and on the other hand by the accuracy of GPS
receivers.

Most of the features in the database are generated from patches
extracted from and therefore coplanar with building façades. These
features can only be matched within a certain angular range1. Its
constraint is often violated when looking down a street and viewing
façades at a steep angle. In this case, which is frequent in practice,
only a small area of the panorama that depicts the near streetside
contains useful features, while further away features are not “vis-
ible” to the algorithm (i.e., they cannot be reliably detected). We
empirically determined a feature block size covering 20 meters of
road direction and both sides of the road in order to yield best re-
sults.

1In general, this range depends on the capabilities of the feature detector.
An angle smaller than ±40◦ seems reasonable in practice.

Figure 5: Partitioning of our feature database into individual fea-
ture blocks. Each block contains around 15000 features on average,
which is around 2.2MB of memory.

An additional justification for this choice of block size is moti-
vated by the accuracy of consumer-grade GPS receivers available in
mobile devices. The accuracy of GPS estimates resides in the range
of 10 to 20 meters. Given a GPS prior, the correct feature block can
be determined easily. In order to avert inaccuracies, the neighbor-
ing blocks are considered as well. With this choice, the environ-
ment around an initial GPS-based position estimate is represented
in a sufficiently reliable way for computing 6DOF localization.

5 LOCALIZATION FROM PANORAMIC IMAGES

For performing self-localization from panoramic images, some
considerations are necessary which will be explained in the follow-
ing. (Note that for the rest of the paper we will refer to the FOV also
as the angular aperture in horizontal direction: we will use these
two terms interchangeably.) In optics, the angular aperture has a
slightly different meaning. For our purpose, however, we assume
the use of a cylindrical model for panorama creation. In this con-
text, the FOV of a panoramic camera directly corresponds to the arc
of the cylinder circle.

The experiments in [2] indicated that increasing the field of view
also increases the robustness of localization. One possible way to
increase the field of view without modifying the device itself is by
letting the user capture panoramic images. Figure 6 illustrates the
basic idea of how we use panoramic images to increase the field
of view for better image-based localization. A partial or complete
panorama can be used for querying the feature database. Features
extracted from the panoramic image are converted into rays and
used directly as input for standard 3-point pose estimation. An al-
ternative approach would be to use the unmodified source images
that were utilized to create the panorama, and feature point tracks.
These tracks can be converted to rays in space using the relative
orientation of the images. However, we chose to work directly with
the panoramic image for reasons of simplicity and lower storage
requirements.

5.1 Three Point Pose Estimation
The classical three point perspective pose estimation (P3P) problem
[8] is also applicable for localizing panoramic images. Figure 7
shows the geometry of the problem.

For pinhole camera models a known camera calibration means
that the image measurements mi can be converted to rays vi and
their pairwise angle � (vi,v j) can be measured. In this case three
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(a) (b) (c)

Figure 6: Extending the field of view illustration. (a) Relative orientation of images with the same projection center. (b) Feature points are
extracted in the blended cylinder projection of the images. (c) Inlier feature matches for the panoramic image after robust pose estimation
against a small office test database, the lines connect the center of projection with the matched database points.

Figure 7: The geometry of the P3P problem for panoramic camera
models is the same as for pinhole models. The law of cosines relates
the unknown distances of 3D points and the camera center xi = ‖C−
Xi‖ with the pairwise angles � (vi,v j) of the image measurement rays.

known 3D points Xi and their corresponding image measurements
mi give rise to 3 pairwise angle measurements. These are sufficient
to compute a finite number of solutions for the camera location and
orientation. Converting our panoramic image measurements mi to
rays vi and thus to pairwise angle measurements � (vi,v j) leads to
the same equation system as in the pinhole case.

For three observed 3D points Xi, the pairwise 3D point distances
li j can be computed. Furthermore the angles between pairs of im-
age measurements θi j are known from the corresponding image
measurements mi. The unknowns are the distances xi between the
center of projection C and the 3D point Xi:

li j = ‖Xi −Xj‖
θi j = � (vi,v j)

xi = ‖C−Xi‖.
Using the law of cosines each of the three point pairs gives one

equation:

l2
i j = x2

i + x2
j −2xix jcosθi j

This is the same polynomial system as in the case of the more
commonly used pinhole camera model and can be solved with the
same techniques, see for example [8]. The main difference is that in
the pinhole case the camera calibration matrix K is used to convert
image measurements to vectors and therefore pairwise Euclidean
angle measurements, while in our case, the rays are defined by the
geometry of the cylindrical projection.

5.2 Optimization
The three point pose estimation is used in a RANSAC scheme to
generate hypotheses for the pose of the camera. After selecting

inlier measurements and obtaining a maximal inlier set, a non-linear
optimization for the pose is applied to minimize the reprojection
error between all inlier measurements mi and their corresponding
3D points Xi.

To avoid increasing error distortions towards the top and bottom
of the panoramic image we defined a meaningful reprojection er-
ror that is independent of the location of the measurement mi on
the cylinder. We approximated the projection locally around the
measurement direction with a pinhole model and applied a constant
rotation Ri to both the measurement ray vi and the camera pose to
move the measurement ray into the optical axis. The rotation Ri is
defined such as

Rivi =
(
0 0 1

)T
.

The remaining degree of freedom can be chosen arbitrarily. This
rotation Ri is constant for each measurement ray vi and therefore
not subject to the optimization.

The imaging model for the corresponding 3D point Xi is then
given by

(
u
v

)
= proj(RiT Xi), where

proj(
(
x y z

)T
) =

( x
z
y
z

)
,

and T is the camera pose matrix representing a rigid transformation.
The optimization minimizes the sum of all squared reprojection

errors as a function of the camera pose matrix T :

E(T ) = ∑
i
‖proj(Rivi)−proj(RiT Xi)‖2 = ∑

i
‖proj(RiT Xi)‖2.

Note that the rotation Ri rotates the measurement into the opti-
cal axis of the local pinhole camera and therefore the projection
proj(Rivi) = (0 0)T . The camera pose matrix T is parameterized
as an element of SE(3), the group of rigid body transformations in
3D. The solution Tmin

Tmin = argmin
T

E(T )

is found through iterative non-linear Gauss-Newton optimization.

6 EXPERIMENTS

In the following, we present evaluation results illustrating several
aspects of our work. One goal of our investigation is to gain insight
into the relationship between the cameras FOV and the resulting
localization accuracy. Another goal is to demonstrate the accuracy
of the method and its applicability for high-quality AR.
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Offline Reconstruction

Camera Canon EOS 5D + 20mm wide angle lens
# of images 4303

image resolution 5616x3744 pixels
# of sparse 3D points 816,948
total size of database 122,769 kB
# of feature blocks 55

# of sections 29

Reference Images

Camera Point Grey Ladybug 3
image resolution 2048x512 pixels (resized for compatibility)

# of images 204

Test Images

Camera Phone Nokia N900
image resolution 2048x512 pixels

average aperture angle ∼ 225◦

# of images 80

Table 1: Details from our reconstruction of the Graz city center and
the panoramic test images captured.

6.1 Localization Database and Panoramic Images
As the raw material for the localization database, we collected a
large set of images from the city center of Graz, Austria. A Canon
EOS 5D SLR camera with a 20mm wide-angle lens was used, and
4303 images were captured at a resolution of 15M pixels. By using
the reconstruction pipeline described in Section 4, a sparse recon-
struction containing 800K feature points of the façades of several
adjacent streets was created. As natural features we used a scale-
space based approach similar to the work of Bay et al. [3]. The en-
tire reconstruction was registered manually with respect to a global
geographic coordinate system, and partitioned into 55 separate fea-
ture blocks. These blocks were combined again into 29 larger sec-
tions according to visibility considerations.

For studying our approach, we also created a set of reference
panoramic images. We captured a set of 204 panoramas using a
Point Grey Ladybug 3 spherical camera. The images were captured
along a walking path through the reconstructed area, and were re-
sized to 2048x512 pixels to be compatible with our localization sys-
tem. Note that we did not enforce any particular circumstances for
the capturing of the reference panoramic images, they were rather
resembling casual snapshots. The reference images and the images
used for reconstruction were taken within a time period of about
6 weeks, while the imaging conditions were allowed to change
slightly.

Since the spherical camera delivers ideal panoramic images, the
results might not resemble realistic conditions for a user to capture
a panorama. For this reason we additionally captured a set of 80 im-
ages using our panorama mapping application. These images were
taken about one year after the acquisition of both other datasets,
while a significant amount of time had passed. The capturing con-
ditions were almost the same, i.e. high noon and partially cloudy
sky. The images expose a high amount of clutter and noise due
to exposure changes of the camera2. An important fact is that in
almost all images only one side of the street could be mapped ac-
curately. This results from the violated condition of pure rotation
around the camera center during mapping.

Some details about the reconstruction and test images are sum-
marized in Table 1.

6.2 Aperture Dependent Localization Performance
By using our panorama generation method, the handicap of the nar-
row FOV of mobile phone cameras can be managed. However, one
remaining question is how the success of the localization procedure

2Note that we simply used auto-exposure setting for acquisition.

and the localization accuracy relates to the FOV of a camera in gen-
eral.

We ran an exhaustive number of pose estimation tests given our
set of panoramic images to measure the dependence of the local-
ization success rate on the angular aperture. We modeled a varying
FOV by choosing an arbitrary starting point along the horizontal
axis in the panoramic image, and by limiting the actually visible
area to a given slice on the panoramic cylinder around this starting
point. In other words, only a small fraction of the panoramic image
relating to a given FOV around the actual starting point is consid-
ered for pose estimation. The angular aperture was incrementally
increased in steps of 5◦ from 30◦ to 360◦.

We hypothesized that in urban scenarios, the localization pro-
cedure is likely to fail if the camera with a small FOV is pointing
down a street at a steep angle. The same procedure is more likely
to be successful if the camera is pointing towards a façade. Con-
sequently, the choice of the starting point is crucial for the success
or failure of the pose estimation procedure, especially for small an-
gular apertures. To verify this assumption, we repeated the random
starting point selection five times, leading to a total of 68,340 tests.

In Figure 8(a), the total number of inliers and features is shown.
The number of inliers is approximately 5% of the number of fea-
tures detected in the entire image. In Figure 8(b) and (c), the trans-
lational and rotational errors of all successful pose estimates are
depicted. Due to the robustness of the approach it is unlikely that a
wrong pose estimate is computed; in ill-conditioned cases the pose
estimation cannot establish successful matches and fails entirely.
As ground truth, we consider the pose estimate with the most in-
liers calculated from a full 360◦ panoramic image. The translational
error lies in the range of several centimeters, while the rotational er-
ror is below 5◦. This indicates that the pose estimate were highly
accurate if it is successful.

The success rate of our localization procedure with respect to the
angular aperture is depicted in Figure 9. We measured the localiza-
tion performance considering different thresholds for the translation
error to accept or reject a pose as being valid. In order to measure
the difference between brute-force based feature matching and our
tree-based matching approach, in Figure 9 (a) and (b) the results for
both approaches are depicted. The tree-based approach has an ap-
proximately 5-10% lower success rate. Since building façades ex-
pose a high amount of redundancy, the tree-based matching is more
likely to establish wrong correspondences. Thus, a lower success
rate is reasonable. For a small threshold the performance is almost
linearly dependent on the angular aperture. This is an important
result since it proves that for solving the localization task the FOV
should be as wide as possible, i.e. a full 360◦ panoramic image in
the ideal case. An additional result is that for a small FOV and
an arbitrarily chosen starting point (corresponding to an arbitrarily
camera snapshot), the localization procedure is only successful in
a small number of cases. Even if the snapshot is chosen to contain
parts of building façades, the localization approach is still likely to
fail due to the relatively small number of matches and even smaller
number of supporting inliers. With increasing aperture values all
curves converge which is an indication that the pose estimates get
increasingly accurate.

By now we only considered random starting points for captur-
ing the panorama. However, a reasonable assumption is that the
user starts capturing a panoramic snapshot while pointing the cam-
era towards building façades intentionally, rather than somewhere
else. Thus, we defined a set of starting points manually for all our
reference images and conducted the previous experiment again. In
Figure 10, the success rate for both matching approaches is depicted
given different thresholds and our manually chosen starting points.
For small aperture values the success rate is between 5 and 15%
higher than for randomly chosen starting points, if the threshold on
pose accuracy is relaxed (compared to Figure 9 (a) and (b) respec-
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Figure 8: Localization Performance for a varying FOV. (a) The average number of inliers is approximately 5% of the features and increases
linearly with the number of features detected in the entire image. (b) For around 84% of all successfully determined poses, the positional error
is below 1m. (c) For around 88% of all successfully determined poses, the rotational error for both the view vector and the upvector is below 5
degrees.

(a) (b)

Figure 9: Success Rate for different thresholds applied on the translation error and random starting points. In (a) the tree-based matching is
depicted, while in (b) the exhaustive matching based results are shown. The results of the tree-based matching are 5-10% worse than the results
of the exaustive matching approach.

(a) (b)

Figure 10: Success Rate for different thresholds applied on the translation error and manually selected starting points. The tree-based matching
results are depicted in (a), the exhaustive matching based results are shown in (b). Compared to Figure 9, for small FOV higher success rates
are achieved under a relaxed accuracy constraint.
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tively). This result implies that successful pose estimates can be
established more easily, but at the expense of a loss of accuracy.
Since the features are not equally distributed in the panoramic im-
age, the curves become saturated in the mid range of aperture val-
ues, mostly due to insufficient new information being added at these
angles. For full 360◦ panoramic images, the results are identical to
the ones achieved in the experiments before.

The entire path of panoramic images is shown in Figure 12, start-
ing from the lower left area (red cylinders) and ending in the upper
left area (cyan cylinders). In the upper right part the localization
fails due to missing parts in the reconstruction. Localization again
succeeds in areas where enough texture is visible (violet cylinders).

6.3 Pose Accuracy
For measuring the pose accuracy depending on the angular aperture,
we ran a Monte-Carlo simulation on one sample panoramic image.
Again, we simulated different angular apertures from 40◦ to 360◦
in steps of 5◦. For each setting, we conducted 100,000 runs with
random starting points, perturbing the set of image measurements
with Gaussian noise of 2σ . This corresponds to a measurement
error for features in horizontal and vertical direction of at most ±5
pixels.

In Table 3, the resulting pose estimates are shown for different
settings of the aperture angle. All poses are considered with a trans-
lational error of at most 1m. The camera pose uncertainty follows
an unimodal distribution for uniformly distributed 3D points. In
our real test environment 3D points are distributed more system-
atically. This is well reflected in our results, the centers follow a
multimodal distribution. The pose estimates cluster visibly in mul-
tiple centers, increasing values of the aperture angle decreases the
variances around the centers. For a full panoramic image, all pose
estimates converge into a single pose with minimal variance and the
number of mixture components is reduced to one, i.e. an increasing
FOV decreases the variance and the complexity of the pose uncer-
tainty.

There are multiple reasons for this behavior. First, for a small
FOV, only a small part of the environment is visible and can be used
for pose estimation. A small field of view mainly affects the esti-
mation of object distance, which, in turn, reduces the accuracy of
the pose estimate in the depth dimension. A second reason for inac-
curate results is that the actual view direction influences the quality
of features used for estimating the pose, especially for a small FOV.
Since the features are non-uniformly distributed for viewing direc-
tions towards façades, the estimation problem can be constrained
better due to a higher number of matches. In contrast, for a cam-
era pointing down a street at a steep angle, the number of features
for pose estimation is considerably lower, and the pose estimation
problem gets harder. Finally, due to the least squares formulation
of the pose estimation algorithm, random noise present in the fea-
ture measurements gets less influential for increasing aperture an-
gles. As a consequence, the pose estimates converge to multiple
isolated positions. These images already cover large parts of the
panoramic view (50-75% of the panorama). A single common esti-
mate is maintained for full 360◦ panoramic images.

6.4 Runtime Estimation
To prove the usability of our approach on mobile devices, we took
runtime measurements of the most important parts of our algorithm
on a Nokia N900 smartphone featuring an ARM Cortex A8 CPU
with 600MHz and 1GB of RAM. The results were averaged over
a localization run involving 10 different panoramic images. The
results of this evaluation are given in Table 2.

The feature extraction process consumes the largest fraction of
the overall runtime. Since the panoramic image is filled incremen-
tally in an online run, the feature extraction process can be split up
to run on small image patches (i.e., the newly finished tile in the

Test Results Algorithm Time [ms]

# of images 10 Feature extraction 3201.1 (11.75 / tile)
avg. # of features 3008 Matching 235.9 (0.92 / tile)
avg. # of matches 160 Robust pose estimation 39.0
avg. # of inliers 76 First frame (15 tiles) < 230

Table 2: Results of our runtime estimation for different parts of our
algorithm on the Nokia N900 smartphone.

Figure 11: Panoramic images captured with our mapping approach.
No exposure adjustment was used to increase the contrast or the
visual appeal of the images.

panorama caption process). Given a tile size of 64x64 pixels, the
average time for feature extraction per tile is around 11.75 ms. As
features are calculated incrementally, the time for feature matching
is split up accordingly to around 0.92 ms per cell. To improve the
accuracy of the pose estimate, the estimation procedure can be run
multiple times as new matches are accumulated over time.

Given an input image size of 320x240 pixels and a tile size of
64x64 pixels, the estimated time for the first frame being mapped
is around 230 ms. This results from the maximum number of tiles
finished at once (15), plus the time for matching and pose estima-
tion. The average time spent for localization throughout all follow-
ing frames can be estimated similarly by considering the number of
newly finished tiles. However, this amount of time remains in the
range of a few milliseconds.

6.5 Panoramas captured under Realistic Conditions

To test the performance of our algorithm on images captured under
realistic conditions our localization approach was run on the second
test set of 80 panoramas captured by our mapping application. Al-
though a significant amount of time had passed between the initial
reconstruction and the acquisition of the test dataset, using exhaus-
tive feature matching our approach was successful in 51 out of 80
cases (63.75%). The tree-based matching approach was only suc-
cessful in 22 of 80 cases (27.5%), however. A pose estimate was
considered successful if the translational error was below 1m and
the angular error was below 5◦. These results mainly align with the
results discussed in Section 6.2. The tree-based matching approach
is more sensitive to changes of the environment and the increas-
ing amount of noise respectively, which directly results in inferior
performance.

We consider these results to be exceptionally good. We did not
compensate for exposure changing artefacts in our panoramic im-
ages (see Figure 11). Given an aperture angle of 180− 270◦ the
results correspond to our previous observations. The fact that the
localization procedure still delivers reasonable results even a year
after reconstruction is remarkable, however.
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60◦ 120◦ 180◦ 240◦ 300◦ 360◦

Table 3: Monte Carlo Simulation of Localization Performance for a varying FOV. With an increasing aperture angle, the pose estimates converge
into smaller clusters. Finally, for a full panoramic image all pose estimates converge to a single position.

Figure 12: The path of panoramic images through the reconstruction. The camera positions are drawn as color coded cylinders, starting from the
bottom left area and ending in the upper left area. Some localization results fail in the upper right area due to missing parts in our reconstruction.

6.6 Live Augmentation

To demonstrate the capability of our system to field real-time AR
experiences on current mobile phone hardware, we are presenting
an application scenario involving two dwarfs running through the
city of Graz. Snapshots from the video sequence accompanying
this paper are depicted in Figure 13. The entire video is available
as supplementary material.

The screenshots show that 3D models are accurately registered
with the real world environment. Some minor errors are still visible,
which are mainly caused by parallax effects. These effects result
from the incorrect assumption of pure rotational movement around
the center of projection. This assumption cannot be hold perma-
nently all the time, so small errors become apparent especially for
close-by objects.

6.7 Discussion

From our evaluation we concluded that the pose estimation algo-
rithm gives highly accurate results in the case of successful comple-
tion. Giving details about the reprojection error, the traditional indi-
cator for accuracy was omitted, since we considered it as an unsuit-
able measure in our case. The panoramic mapping procedure intro-
duces a certain degree of discretization error, while the assumption
of pure rotational movement during mapping creates another source
of inaccuracy. The pose estimation procedure internally minimizes
the distance between the projection (i.e., mapping) of 3D points
and the corresponding measurements. This has more algorithmic
relevance than direct implications on the perceived quality of the
augmentation.

The number of inliers for pose estimation lies in the range of 5-

10% of the features matched, and in the range of about 1-2% of the
entire number of features detected. On the one hand, this means that
our pose estimation algorithm is very robust against outliers. On the
other hand, the use of alternative, additional feature types should be
considered to make the entire localization procedure more reliable.

The real-time applicability of our approach makes it highly suit-
able for the use on mobile phones. Although the size of the feature
database as a whole is still prohibitive, holding the entire database
on external storage on the device or downloading feature blocks
occasionally, is a reasonable option. The smartphone used in our
evaluation is a mid-range device in terms of computational power.
More recent devices with fast multi-core CPUs are more likely to be
capable of dealing with the computational demands of the method
presented in this paper. Note that we did not investigate the use
of exhaustive matching on the mobile device. Given a reasonable
amount of a few thousand features, realistically brute-force match-
ing cannot be applied under real-time constraints at present.

In this work, we do not include any information from non-visual
sensors like compasses or gyroscopes. Obviously, the use of such
sensors can help with multiple steps of our approach. For exam-
ple, through compass information a guided matching scheme could
be employed, pre-filtering features based on the current view direc-
tion and visibility constraints. An example of combining multiple
heterogeneous sensors and visual tracking has for example been de-
scribed in the work of Schall et al. [17], for instance.

7 CONCLUSION

We presented a highly accurate outdoor localization system using
panoramic images which can be used in real-time on current mobile
devices. The most important characteristics of our approach are its
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Figure 13: Five sample snapshots from the augmented video sequence. After initialization, the panoramic preview on the bottom is removed to
improve the visibility of the augmentations.

high degree of accuracy and its low computational demands that
make it suitable to run on off-the-shelf mobile phones. We man-
aged to overcome the problem of narrow FOV of current cameras
on mobile devices by employing a novel technique for image cap-
turing. Our approach can be used intuitively and in a very straight
forward way, as the user is simply asked to capture the environment
as a visually pleasing panoramic snapshot, and our approach allows
for augmentations of considerably higher quality than possible with
previous outdoor approaches.

Building a localization system with low computational demands
and a high degree of robustness and accuracy is a challenging task.
A significant unresolved issue is the acquisition and maintenance of
the vast amounts of data needed for highly accurate reconstruction
and subsequent localization. Databases have to contain information
covering the visual variations for different times of the day and have
to capture the appearance of the environment throughout the year.
Building suitable and maintainable representations is an open issue
for all localization tasks employing visual sensors.

Large companies like Microsoft or Google tend to off-load the
localization task to the cloud, mainly due to computational and
maintenance reasons. However, we do not consider this as a reason-
able option given the constraints of limited bandwidth and real-time
operation.

For future work, we mainly consider the fusion of multiple het-
erogeneous sensors, such as recent micro-gyroscopes, to further en-
hance our localization approach. Moreover, we want to explore
the use of more powerful mobile device hardware to make our ap-
proach more robust. Finally, upcoming stereo or depth cameras in
mobile phones could be used to create a tight feedback loop be-
tween self-localization, image capturing, updating and maintaining
the database representations used for the localization task. How-
ever, such a solution will be highly dependent on the characteristics
of the actual sensor hardware.
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